On the near UV photophysics of a phenylalanine residue: conformation-dependent ππ* state deactivation revealed by laser spectroscopy of isolated neutral dipeptides.

نویسندگان

  • Yohan Loquais
  • Eric Gloaguen
  • Mohammad Alauddin
  • Valérie Brenner
  • Benjamin Tardivel
  • Michel Mons
چکیده

The primary step of the near UV photophysics of a phenylalanine residue is investigated in one- and two-color pump-probe R2PI nanosecond experiments carried out on specific conformers of the Ac-Gly-Phe-NH2 molecule and related neutral compounds isolated in a supersonic expansion. Compared to toluene, whose ππ* state photophysics is dominated by intersystem crossing with a lifetime of ∼80 ns at the origin, the first ππ* state of Phe in the peptide environment is systematically found to be shorter-lived. The lifetime at the origin of transition is found to be significantly shortened in the presence of a primary amide (-CONH2) group (20-60 ns, depending on the conformer considered), demonstrating the existence of an additional non-radiative relaxation channel related to this chemical group. The quenching effect induced by the peptide environment is still more remarkable beyond the origin of the ππ* state, since vibronic bands of one of the 4 conformers observed (the 27-ribbon conformation) become barely detectable in the ns R2PI experiment, suggesting a significant conformer-selective lifetime shortening (below 100 ps). These results on dipeptides, which extend previous investigations on shorter Phe-containing molecules (N-Ac-Phe-NH2 and N-Ac-Phe-NH-Me), confirm the existence of conformer-dependent non-radiative deactivation processes, whose characteristic timescales range from tens of ns down to hundreds of ps or below. This dynamics is assigned to two distinct mechanisms: a first one, consistent with an excitation energy transfer from the optically active ππ* state to low-lying amide nπ* excited states accessed through conical intersections, especially in the presence of a C-terminal primary amide group (-CONH2); a second one, responsible for the short lifetimes in 2(7) ribbon structures, would be more specifically triggered by phenyl ring vibrational excitations. Implications in terms of spectroscopic probing of Phe in a peptide environment, especially in the presence of a quenching amide group, are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gas-phase dipeptide analogue acetyl-phenylalanyl-amide: a model for the study of side chain/backbone interactions in proteins.

The issue of the influence of the side chain/backbone interaction on the local conformational preferences of a phenylalanine residue in a peptide chain is addressed. A synergetic approach is used, which combines gas-phase UV spectroscopy as well as gas-phase IR/UV double-resonance experiments with DFT and post Hartree-Fock calculations. N-Acetyl-Phe-amide was chosen as a model system for which ...

متن کامل

Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study.

The present work is directed toward understanding the mechanisms of excited state deactivation in three neutral model peptides containing the phenylalanine residue. The excited state dynamics of theγL(g+)folded form of N-acetylphenylalaninylamide (NAPA B) and its amide-N-methylated derivative (NAPMA B) is reviewed and compared to the dynamics of the monohydrated structure of NAPA (NAPAH). The g...

متن کامل

Photophysics of cytosine tautomers: new insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations.

A comprehensive picture of the ultrafast nonradiative decay mechanisms of three cytosine tautomers (amino-keto, imino-keto, and amino-enol forms) is revealed by high-level ab initio potential energy calculations using the multistate (MS) CASPT2 method and also by on-the-fly excited-state molecular dynamics simulations employing the CASSCF method. To obtain a reliable potential energy profile al...

متن کامل

Non-radiative relaxation of UV photoexcited phenylalanine residues: probing the role of conical intersections by chemical substitution.

A conformation-selective photophysics study in phenylalanine model peptides, combining pump-probe gas phase experiments and excited state calculations, highlights for the first time the quenching properties of a primary amide group (through its nπ* excited state) along with the effect of vibrational energy that facilitates access to the conical intersection area.

متن کامل

Discrimination Between Diastereoisomeric Dipeptides by IR–UV Double Resonance Spectroscopy and Ab Initio Calculations

We studied diastereoisomeric dipeptides, containing two chiral centers, by comparing ab initio calculations with laser desorption jet-cooling experiments. We studied the hetero-dipeptides LL–VF (L-Val-L-Phe) and DL–VF and the homo-dipeptides LL–FF (L-Phe-L-Phe) and LD–FF. Changing one of the chiral centers in each molecule leads to changes in the spectra that can be used to distinguish between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 40  شماره 

صفحات  -

تاریخ انتشار 2014